Umg_logo
englisch | deutsch
Header_scnn_full_brain_wt
Header_fw_20130115_1_1f%c3%bcrdiehomepage-01-01-01
ZENTRUM ANATOMIE

NEUROANATOMIE

Home
Mitglieder
Forschung
Publikationen
Lehre
Neues/Stellen
Kontakt

Prof. Dr. Jochen Staiger

Prof. Dr. Bernhard Reuss

Gabriele Schmidt

Dr. rer. nat. Julien Guy

Dr. rer. nat. Martin Möck

Dr. med. Rebeka Andrea Palicz

Dr. rer. nat. Joachim Rosenbusch

Dr. rer. nat. Mirko Witte

Merve Özgür Erat

Aybeniz Ece Cetin

Weilin Chen

Xiaoyi Mao

Anouk Meeuwissen

Felix Preuss

Jenifer Rachel

Pauline Antonie Ulmke

Harun Akkoyun

Simon Badura

Thore Behrendt

Felicita Fischer

Janis Hülsemann

Alina Rüppel

Lisa Thiecke

Sabrina Hübner

Christin Korb

Ima Mansori

Nicolas Zdun

Sandra Heinzl

Patricia Sprysch

Pavel Truschow

Dr. rer. nat. Csaba Dávid

Dr. rer. nat. Alvar Prönneke

PD Dr. Michael Rickmann

Dr. Marcel Ruiz Mejias

Dr. rer. nat. Dirk Schubert

Dr. Godwin Sokpor

Dr. rer. nat. Nidhi Subhashini

Dr. rer. nat. Tran Tuoc

Dr. med. Robin Wagener

Dr. rer. nat. Yuanbin Xie

Xiaojuan Zhou

Eman Abbas

Michael Feyerabend

Georg Hafner

Kamila Kiszka

Nieves Mingo Moreno

Ramanathan Narayanan

Huong Nguyen

Florian Walker

Khatuna Aslanishvili

Christina Bachmann

Jürgen Delchmann

Esther Alexandra Dockhorn

Tatjana Fischer

Anna Garcia Galera

Kristina Glöckner

Dilbrin Khelo

Stephen Olt

Bettina Pater

Alexandra Sachkova

Bianca Scheuer

Joris Brehmer

Dennis Dalügge

Julia Dziubek

Ricardo Castro Hernandez

Fernando Gonzalez Ibanez

Anette Mertens

Megha Patwa

Adrián Villalobos

Simon Weiler

Maxim Wintergoller

Anna Dudek

Heike Faust

Ansgar Jahn

Linh Pham


Smaller_huong
Huong

Nguyen


Last Name: Nguyen Position: PhD Student
First Name: Huong Ort:
Akademischer Titel: Tel.:

Publikationen

Lebenslauf


Publikationen

2018

Epigenetic regulation by BAF (mSWI/SNF) complexes limits neural stem cell proliferation by suppressing Wnt signaling in late embryonic development.
Nguyen H*, Kerimoglu C*, Pirouz M, Pham L, Kiszka KA, Sokpor G, Sakib MS, Rosenbusch J, Teichmann U, Seong RH, Stoykova A, Fischer A, Staiger JF, Tuoc T .
Stem Cell Reports, doi: 10.1016/j.stemcr.2018.04.014, 2018.
abstract link

During early cortical development, neural stem cells (NSCs) divide symmetrically to expand the progenitor pool, whereas in later stages, NSCs divide asymmetrically to self-renew and produce other cell types. The timely switch from such proliferative to differentiative division critically determines progenitor and neuron numbers. However, the mechanisms that limit proliferative division in late cortical development are not fully understood. Here, we show that the BAF (mSWI/SNF) complexes restrict proliferative competence and promote neuronal differentiation in late corticogenesis. Inactivation of BAF complexes leads to H3K27me3-linked silencing of neuronal differentiation-related genes, with concurrent H3K4me2-mediated activation of proliferation-associated genes via de-repression of Wnt signaling. Notably, the deletion of BAF complexes increased proliferation of neuroepithelial cell-like NSCs, impaired neuronal differentiation and exerted a Wnt-dependent effect on neocortical and hippocampal development. Thus, these results demonstrate that BAF complexes act as both activators and repressors to control global epigenetic and gene expression programs in late corticogenesis.

2016

mSWI/SNF (BAF) complexes are indispensable for the neurogenesis and development of embryonic olfactory epithelium.
Bachmann C*, Nguyen H*, Rosenbusch J*, Pham L, Rabe T, Patwa M, Sokpor G, Seong RH, Ashery-Padan R, Mansouri A, Stoykova A, Staiger JF, Tuoc T..
Plos Genetics, 2016. 12(9), *equally contributed authors
abstract link

Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.

Ablation of BAF170 in Developing and Postnatal Dentate Gyrus Affects Neural Stem Cell Proliferation, Differentiation, and Learning.
Tuoc T, Dere E, Radyushkin K, Pham L, Nguyen H, Tonchev AB, Sun G, Ronnenberg A, Shi Y, Staiger JF, Ehrenreich H, Stoykova A.
Molecular Neurobiology, 2016. doi:10.1007/s12035-016-9948-5
abstract link

The BAF chromatin remodeling complex plays an essential role in brain development. However its function in postnatal neurogenesis in hippocampus is still unknown. Here, we show that in postnatal dentate gyrus (DG), the BAF170 subunit of the complex is expressed in radial glial-like (RGL) progenitors and in cell types involved in subsequent steps of adult neurogenesis including mature astrocytes. Conditional deletion of BAF170 during cortical late neurogenesis as well as during adult brain neurogenesis depletes the pool of RGL cells in DG, and promotes terminal astrocyte differentiation. These derangements are accompanied by distinct behavioral deficits, as reflected by an impaired accuracy of place responding in the Morris water maze test, during both hidden platform as well as reversal learning. Inducible deletion of BAF170 in DG during adult brain neurogenesis resulted in mild spatial learning deficits, having a more pronounced effect on spatial learning during the reversal test. These findings demonstrate involvement of BAF170-dependent chromatin remodeling in hippocampal neurogenesis and cognition and suggest a specific role of adult neurogenesis in DG in adaptive behavior.

Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development.
Nguyen H*, Sokpor G*, Pham L, Rosenbusch J, Stoykova A, Staiger JF, Tuoc T.
Cell Cycle, 2016. 2016, 18;15(10):1317-24, equally contributed authors
abstract link

The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes. Importantly, we recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 core subunits in mice abolished the presence of the other BAF subunits in the developing cortex. The generated dcKO mutant provides a novel and powerful tool for investigating how entire BAF complexes affect cortical development. Using this model, we found that BAF complexes globally control the key heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains the stability of BAF complexes in the forebrain and throughout the embryo during development. Furthermore, we show that the loss of BAF complexes in the above-described model up-regulates H3K27me3 and impairs forebrain development and embryogenesis. These findings improve our understanding of epigenetic mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes that control embryonic development.



Login | Impressum | Kalendar | Kontakt | Mobile Version

Design By High Impact SEO Services