Prof. Dr. Jochen Staiger
Prof. Dr. Bernhard Reuss
Gabriele Schmidt
Dr. rer. nat. Julien Guy
Dr. rer. nat. Martin Möck
Dr. med. Rebeka Andrea Palicz
Dr. Stefan Pommer
Dr. rer. nat. Joachim Rosenbusch
Dr. rer. nat. Mirko Witte
Merve Özgür Erat
Aybeniz Ece Cetin
Xiaoyi Mao
Felix Preuss
Jenifer Rachel
Harun Akkoyun
Felicita Fischer
Philipp Kolligs
Lukas Müller
Flore Schork
Sophia Heidenreich
Ima Mansori
Leander Matthes
Paul Molis
Sandra Heinzl
Sabrina Hübner
Patricia Sprysch
Pavel Truschow
Dr. rer. nat. Csaba Dávid
Dr. rer. nat. Alvar Prönneke
PD Dr. Michael Rickmann
Dr. Marcel Ruiz Mejias
Dr. rer. nat. Dirk Schubert
Dr. Godwin Sokpor
Dr. rer. nat. Nidhi Subhashini
Dr. rer. nat. Tran Tuoc
Dr. med. Robin Wagener
Dr. rer. nat. Yuanbin Xie
Dr. rer. nat. Xiaojuan Zhou
Eman Abbas
Weilin Chen
Michael Feyerabend
Georg Hafner
Kamila Kiszka
Anouk Meeuwissen
Nieves Mingo Moreno
Ramanathan Narayanan
Huong Nguyen
Pauline Antonie Ulmke
Florian Walker
Khatuna Aslanishvili
Christina Bachmann
Simon Badura
Thore Behrendt
Jürgen Delchmann
Esther Alexandra Dockhorn
Tatjana Fischer
Anna Garcia Galera
Kristina Glöckner
Janis Hülsemann
Dilbrin Khelo
Stephen Olt
Bettina Pater
Alina Rüppel
Alexandra Sachkova
Bianca Scheuer
Lisa Thiecke
Joris Brehmer
Dennis Dalügge
Julia Dziubek
Ricardo Castro Hernandez
Fernando Gonzalez Ibanez
Christin Korb
Anette Mertens
Megha Patwa
Adrián Villalobos
Simon Weiler
Maxim Wintergoller
Nicolas Zdun
Anna Dudek
Heike Faust
Sabrina Heide
Ansgar Jahn
Linh Pham

Abbas
Last Name: | Abbas | Position: | PhD Student |
First Name: | Eman | Location: | |
Academic Title: | Tel.: |
Curriculum Vitae
Publications
2021
H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion.
Cemil Kerimoglu, Linh Pham, Anton B. Tonchev, M. Sadman Sakib, Yuanbin Xie, Godwin Sokpor, Pauline Antonie Ulmke, Lalit Kaurani, Eman Abbas, Huong Nguyen, Joachim Rosenbusch, Alexandra Michurina, Vincenzo Capece, Meglena Angelova, Nenad Maricic, Beate Brand-Saberi, Miriam Esgleas, Mareike Albert, Radoslav Minkov, Emil Kovachev, Ulrike Teichmann, Rho H. Seong, Wieland B. Huttner, Huu Phuc Nguyen, Anastassia Stoykova, Jochen F. Staiger, Andre Fischer, Tran Tuoc.
Science Advances 2021; 7 : eabc6792, 2021.
abstract link
Increase in the size of human neocortex―acquired in evolution―accounts for the unique cognitive capacity ofhumans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), includingthe basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquiredthrough epigenetic alterations in BPs. However, how the epigenome in BPs differs across species is not known.Here, we report that histone H3 acetylation is a key epigenetic regulation in bIP amplification and cortical expansion.Through epigenetic profiling of sorted bIPs, we show that histone H3 lysine 9 acetylation (H3K9ac) is low inmurine bIPs and high in human bIPs. Elevated H3K9ac preferentially increases bIP proliferation, increasing the sizeand folding of the normally smooth mouse neocortex. H3K9ac drives bIP amplification by increasing expressionof the evolutionarily regulated gene, Trnp1, in developing cortex. Our findings demonstrate a previously unknownmechanism that controls cortical architecture.
Conditional Loss of BAF (mSWI/SNF) Scaffolding Subunits Affects Specification and Proliferation of Oligodendrocyte Precursors in Developing Mouse Forebrain.
Eman Abbas, Mohamed A Hassan, Godwin Sokpor, Kamila Kiszka, Linh Pham, Cemil Kerimoglu, Andre Fischer, Huu Phuc Nguyen, Jochen F Staiger, Tran Tuoc.
Front Cell Dev Biol. 2021 Jul 15;9:619538., 2021.
link
2018
Transcriptional and epigenetic control of mammalian olfactory epithelium development.
Sokpor G*, Abbas E*, Rosenbusch J, Staiger JF, Tuoc T..
Molecular Neurobiology (https://doi.org/10.1007/s12035-018-0987-y), 2018.
abstract link
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types, display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.