Umg_logo
english | german
Header_triptychon_l1_edited_klein
Header_layermarkerwt
CENTER FOR ANATOMY

NEUROANATOMY

Home
Staff
Research
Publications
Teaching
News/Jobs
Contact

Prof. Dr. Jochen Staiger

Prof. Dr. Bernhard Reuss

Gabriele Schmidt

Dr. rer. nat. Julien Guy

Dr. rer. nat. Martin Möck

Dr. med. Rebeka Andrea Palicz

Dr. Stefan Pommer

Dr. rer. nat. Joachim Rosenbusch

Dr. rer. nat. Mirko Witte

Merve Özgür Erat

Aybeniz Ece Cetin

Xiaoyi Mao

Felix Preuss

Jenifer Rachel

Harun Akkoyun

Felicita Fischer

Philipp Kolligs

Lukas Müller

Flore Schork

Sophia Heidenreich

Ima Mansori

Leander Matthes

Paul Molis

Sandra Heinzl

Sabrina Hübner

Patricia Sprysch

Pavel Truschow

Dr. rer. nat. Csaba Dávid

Dr. rer. nat. Alvar Prönneke

PD Dr. Michael Rickmann

Dr. Marcel Ruiz Mejias

Dr. rer. nat. Dirk Schubert

Dr. Godwin Sokpor

Dr. rer. nat. Nidhi Subhashini

Dr. rer. nat. Tran Tuoc

Dr. med. Robin Wagener

Dr. rer. nat. Yuanbin Xie

Dr. rer. nat. Xiaojuan Zhou

Eman Abbas

Weilin Chen

Michael Feyerabend

Georg Hafner

Kamila Kiszka

Anouk Meeuwissen

Nieves Mingo Moreno

Ramanathan Narayanan

Huong Nguyen

Pauline Antonie Ulmke

Florian Walker

Khatuna Aslanishvili

Christina Bachmann

Simon Badura

Thore Behrendt

Jürgen Delchmann

Esther Alexandra Dockhorn

Tatjana Fischer

Anna Garcia Galera

Kristina Glöckner

Janis Hülsemann

Dilbrin Khelo

Stephen Olt

Bettina Pater

Alina Rüppel

Alexandra Sachkova

Bianca Scheuer

Lisa Thiecke

Joris Brehmer

Dennis Dalügge

Julia Dziubek

Ricardo Castro Hernandez

Fernando Gonzalez Ibanez

Christin Korb

Anette Mertens

Megha Patwa

Adrián Villalobos

Simon Weiler

Maxim Wintergoller

Nicolas Zdun

Anna Dudek

Heike Faust

Sabrina Heide

Ansgar Jahn

Linh Pham


Smaller_unbenannt-2
Alvar

Prönneke


Last Name: Prönneke Position: Postdoc
First Name: Alvar Location: Kreuzbergring 40, 37075 Göttingen
Academic Title: Dr. rer. nat. Tel.:

Publications
Teachings

Curriculum Vitae


Publications

2019

Neuromodulation Leads to a Burst-Tonic Switch in a Subset of VIP Neurons in Mouse Primary Somatosensory (Barrel) Cortex.
Prönneke A, Witte M, Möck M, Staiger JF.
Cerebral Cortex doi: 10.1093/cercor/bhz102, 2019.
abstract link

Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing,sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIPneurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found apeculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamicburst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials.Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could beinduced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotoninevoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purelymonophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologicallydefined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate thestate of cortical circuits in a profound manner.

2015

Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences.
Prönneke A, Scheuer B, Wagener RJ, Möck M, Witte M, and Staiger JF.
Cereb. Cortex (2015) 25 (12): 4854-4868. doi: 10.1093/cercor/bhv202 , 2015.
abstract pdf link

Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate disinhibitory circuit motifs found in all major neocortical areas. Several of these recent studies used transgenic Vip-ires-cre mice to specifically target the population of VIP-expressing interneurons. This makes it necessary to elucidate in detail the sensitivity and specificity of Cre expression for VIP neurons in these animals. Thus, we quantitatively compared endogenous tdTomato with Vip fluorescence in situ hybridization and αVIP immunohistochemistry in the barrel cortex of VIPcre/tdTomato mice in a layer-specific manner. We show that VIPcre/tdTomato mice are highly sensitive and specific for the entire population of VIP-expressing neurons. In the barrel cortex, approximately 13% of all GABAergic neurons are VIP expressing. Most VIP neurons are found in layer II/III (∼60%), whereas approximately 40% are found in the other layers of the barrel cortex. Layer II/III VIP neurons are significantly different from VIP neurons in layers IV-VI in several morphological and membrane properties, which suggest layer-dependent differences in functionality.

What types of neocortical GABAergic neurons do really exist?.
Jochen F. Staiger, Martin Möck, Alvar Prönneke, Mirko Witte .
e-Neuroforum (Springer), 2015.
abstract link

The neocortex is regarded as the brain structure responsible for mediating higher brain functions, like conscious perception of sensory signals, learning and memory or programming of goal-directed behavior. Cortical circuits that enable these functions are formed by, first, a larger population of excitatory so-called principal cells (i.e., glutamatergic pyramidal cells; ca. 80–85 %), which issue long-distance projections, in addition to local recurrent collaterals, which form the major part of local cortical excitatory circuits. A second, smaller population of inhibitory also called local or short-axoned interneurons (i.e., GABAergic neurons; ca. 15–20 %), however, contribute heavily to intracortical microcircuits too. They can be subdivided by their location in specific areas, layers, or columns, which possess specific input–output relationships, but also in terms of morphology, electrophysiology, molecular expression profiles, and subcellular target specificity. Here it is proposed that, at present, in the rodent neocortex this population of GABAergic neurons can be reasonably divided into six different types, mainly due to their unique axonal patterns and subcellular target specificity: (i) axo-axonic cells, (ii) basket cells, (iii) Martinotti cells, (iv) bipolar/bitufted cells, (v) neurogliaform cells, and (vi) projection neurons. These different types of GABAergic neurons strongly govern the working of cortical circuits for meaningful behavior by feed-forward and feedback inhibition as well as disinhibition. Thus, they keep excitation in check, perform gain modulation, and open temporal or spatial windows for input control or output generation.

Teachings

SS 2015:

Master Neurobiology II (Course)

Dr. Martin Möck, Dr. Mirko Witte, Florian Walker, Alvar Prönneke,

WS 2014/15:

Master Neurobiology I (Course)

Dr. Martin Möck, Dr. Mirko Witte, Florian Walker, Alvar Prönneke,




Login | Imprint | Calendar | Contact | Mobile Version

Design By High Impact SEO Services